欢迎来到山东金发特环保科技有限公司官网!

山东金发特环保科技有限公司

  • 源头厂家
  • 全国联保
  • 一站式服务
全国24小时服务热线: 13011683888
上一条 下一条
  • 焦化污水处理设备

焦化污水处理设备

焦化废水处理系统 焦化废水主要来自焦炉煤气初冷和焦化生产过程中的生产用水以及蒸汽冷凝废水。主要特征为:污染物浓度高,难于降解,由于焦化废水中氮的存在,致使生物净化所需的氮源过剩,给处理达标带


立即咨询 立即咨询
联系热线 13011683888

 


焦化废水处理系统

       焦化废水主要来自焦炉煤气初冷和焦化生产过程中的生产用水以及蒸汽冷凝废水。主要特征为:污染物浓度高,难于降解,由于焦化废水中氮的存在,致使生物净化所需的氮源过剩,给处理达标带来较大困难;废水排放量大,每吨焦用水量大于2.5t;废水危害大,焦化废水中多环芳烃不但难以降解,而且通常还是强致癌物质,对环境造成严重污染的同时也直接威胁到人类健康。
       焦化废水属高浓度有机有毒废水,不易降解,故将部分生活污水纳入其中,改善其污水水质,让污水能够便于生物降解,本工艺采用物化和生化处理工艺。 
       根据我公司多年对国内焦化废水处理工艺研究的基础上,结合我公司在处理同类型厂家的实践经验,根据本工程废水的特点,确定采用一种经济、可靠、管理简便的物化和生化处理工艺。因焦化厂产生的污水水温较高,故确定采用露天布置方式,成套设备材质为碳钢结构,构筑物为钢筋混凝土结构。

 

工艺说明 
本工艺采用A2/O法,即厌氧→水解酸化 →好氧。预处理工艺采用破乳除油、铁碳催化氧化和化学沉淀。
 1、平流式除油池 
平流式除油池除油率一般为60%~80%,粒径150μm以上的油珠均可除去。 
2、铁碳微电解催化氧化 
电化学反应(催化微电解)处理技术是目前处理高浓度有机废水的一种理想工艺。它是利用LAT系列规整型多元催化电化学氧化填料及酸套处理设备形成反应系统对废水进行处理。系统通水后电化学氧化填料自身产生的0.9----1.7V电位差,在设备内会形成无数的原电池,原电池以废水做电解质,通过阴阳端的放电形成对废水的电化学处理,进而达到对废水中有机物进行电化学降解的目的。 
在处理过程中产生的新生态[H]、Fe2 + 等还能与废水中的许多组分发生氧化还原反应,比如能破坏有色废水中的有色物质的发色基团或助色基团,甚至断链,达到降解脱色的作用;生成的Fe2 + 进一步氧化成Fe3 +,它们的水合物具有较强的吸附--絮凝活性,特别是在加碱调pH 值后生成氢氧化亚铁和氢氧化铁胶体絮凝剂,它们的絮凝能力远远高于一般药剂水解得到的氢氧化铁胶体,能大量吸附水中分散的微小颗粒,金属粒子及有机大分子。
 3、厌氧工艺 
 废水厌氧生物处理是指在无分子氧条件下通过厌氧微生物(包括兼氧微生物)的作用,将废水中的各种复杂有机物分解转化成甲烷和二氧二碳等物质的过程,敢称为厌氧消化。与好氧过程的根本区别在于不以分子态氧作为受氢体,而以化合态氧、碳、氮等为受氢体。厌氧生物处理是一个复杂的微生物化学过程,依靠三大主要类群的细菌,即水解产酸细菌、产氢产乙酸细菌和产甲烷细菌的联合作用完成。因而粗略地将厌氧消化过程划分为三个连续的阶段,即水解酸化阶段、产氢产乙酸阶段和产甲烷阶段。 
第1阶段为水解酸化阶段。复杂的大分子、不溶性有机物先在细胞外酶的作用下水解为小分子、溶解性有机物,然后渗入细胞体内,分解产生挥发性有机酸、醇类、醛类等。这个阶段主要产生脂肪酸。 
碳水化合物、脂肪和蛋白质的水解酸化过程分别为:
            
                
 
由于简单碳水化合物的分解产酸作用,要比含氮有机物的分解产氨作用迅速,故蛋白质的分解在碳水化合物分解后产生。 
含氮有机物分解产生的NH3除了提供合成细胞物质的氮源外,在水中部分电离,形成NH4HCO3,具有缓冲消化液PH值的作用,故有时也把继碳水化合物分解后的蛋白质分解产氨过程称为酸性减退期,反应为: 

NH3  +H2O NH+4+OH-  +CO2  NH4HCO3 NH4HCO3+CH3COOH  
CH3COONH4+H20+CO2 
第2阶段为产氢产乙酸阶段。在产氢产乙酸细菌的作下,第一阶段产生的各种有机酸被分解转化成乙酸和H2,在降解奇数碳素有机酸时还形成CO2,如: 
CH3CH2CH2CH2COOH+2H2O  
 CH3CH2COOH+CH3COOH+2H2 
 
第3阶段为产甲烷阶段。产甲烷细菌将乙酸、乙酸盐、CO2和H2等转化为甲烷。此过程由两组生理上不同的产甲烷菌完成,一组把氢和二氧化碳转化成甲烷,另一组从乙酸或乙酸盐脱羧产生甲烷,前者约占总量的1/3,后者约占2/3,
 从厌氧发酵产生沼气的过程分析,它分为四个阶段: 
缺氧阶段:固体物质降解为溶解性物质,大分子物质降解为小分子物质,主要起作用的微生物为兼氧性的缺氧菌,此阶段时间较短。 
酸化阶段:碳水化合物降解为脂肪酸,主要为醋酸、丙酸和丁酸,主要起作用的微生物为产酸菌,缺氧和酸化阶段进行得较快,难于将其分开,一般统称为缺氧,这两个阶段约为2-5h。 
酸性衰退阶段:有机酸和溶解的含氮化合物分解成氨、胺、碳酸盐和少量的CO2、N2、CH4和H2。由于产氨细菌的活动,使氨态氮浓度增加,氧化还原电位降低,PH值上升。此阶段的副产物还有H2S、吲哚、粪臭素和硫醇,使厌氧发酵带有不良的气味均在这一 阶段。 
甲烷化阶段:由于PH值升高,为甲烷菌创造了适宜的条件,甲烷菌把有机酸转化为沼气,此阶段时间较长约为15d左右。
 4、水解酸化 
水解(酸化)处理方法是一种介于好氧和厌氧处理法之间的方法,和其它工艺组合可以降低处理成本提高处
理效率。水解酸化工艺根据产甲烷菌与水解产酸菌生长速度不同,将厌氧处理控制在反应时间较短的厌氧处理第一和第二阶段,即在大量水解细菌、酸化菌作用下将不溶性有机物水解为溶解性有机物,将难生物降解的大分子物质转化为易生物降解的小分子物质的过程,从而改善废水的可生化性,为后续处理奠定良好基础。 
水解是指有机物进入微生物细胞前、在胞外进行的生物化学反应。微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶来完成生物催化反应。 
酸化是一类典型的发酵过程,微生物的代谢产物主要是各种有机酸。 从机理上讲,水解和酸化是厌氧消化过程的两个阶段,但不同的工艺水解酸化的处理目的不同。水解酸化-好氧生物处理工艺中的水解目的主要是将原有废水中的非溶解性有机物转变为溶解性有机物,特别是工业废水,主要将其中难生物降解的有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理。考虑到后续好氧处理的能耗问题,水解主要用于低浓度难降解废水的预处理。混合厌氧消化工艺中的水解酸化的目的是为混合厌氧消化过程的甲烷发酵提供底物。而两相厌氧消化工艺中的产酸相是将混合厌氧消化中的产酸相和产甲烷相分开,以创造各自的环境。
 5、接触氧化池 
     生物接触氧化也是由大量的细菌原生物组成的细菌生长在曝气池内,细菌为好氧菌,在充氧的情况下,利用细菌来分解污水中的有机物,污水中的有机物通过细菌的细胞壁被细胞吸收,固体和胶体有机物由细胞分泌的体外酶分解扣溶解性有机物,再渗入细菌细胞,细菌通过自身的生命活力,氧化还原合成过程,把有机物氧化成无机物,使碳氧化合物分解成二氧化碳和水,氮化合物变成硝酸盐和水从而达到净化污水的目的。               
     生化池采用活性污泥法。活性污泥的培养训化,提供菌种直接进行培养训
化,并且利用就近同类污水处理的活性污泥接种,这样在水温15-25℃之间,直接培养训化10-15天即可。大大提高了其处理能力。其特点为: 
(1)对冲击负荷有较强的适应性。因为普通活性污泥法的曝气池在冲击负荷作用下,曝气时间缩短,活性污泥大量随水流出,使池内的微生物浓度降低,因此抗冲击负荷能力小。而接触氧化池其微生物大量地固定在填料上,形成浓度很高的污泥床,污水的冲击负荷对其影响小。 
(2)污泥生成量小,不产生污泥膨胀的危害,能够保证出水水质。所谓“污泥膨胀”是指由于污水水质或水量的变化,引起活性污泥沉降性能变化,二沉池污泥面不断上升,造成污泥流失,使曝气池内活性悬浮污泥浓度降低,从而破坏正常的处理工艺。这种现象多在普通活性污泥法系统中产生,也是普通活性污泥法在日常管理中注重的一个问题。 
综上分析,活性污泥法是一项先进技术、成熟的污水处理方法,运行较为稳定,抗冲击负荷。

 

 



山东金发特环保科技有限公司

全国服务热线

13011683888



金发特

电话:0536-6522228

:0536-6522228

Q Q:123456

邮箱:1373580038@qq.com

地址:山东诸城市东武街11号


在线留言订购

订购的产品

焦化污水处理设备

您的姓名
您的电话
您的邮箱
在线咨询
在线客服系统